Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 131
Filtrar
1.
Food Chem X ; 22: 101293, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38550884

RESUMEN

Herein, burdock polysaccharide (BP) and modified burdock polysaccharide (MBP) were prepared, followed by the fabrication of chlorogenic acid (CA)-BP, CA-MBP, isochlorogenic acid A (ICA)-BP, and ICA-MBP nanoparticles. Afterward, the structural characteristics, physical stability, digestive characteristics, and antioxidant activity of hydrogen peroxide (H2O2)-damaged HepaRG cells were evaluated. The result indicated that the loading capacities of CA in BP-CA and MBP-CA were 0.14 and 0.53 µg/mg, respectively. Conversely, the loading capacities of ICA in BP-ICA and MBP-ICA were 0.36 and 0.60 µg/mg, respectively. Four complex nanoparticles exhibited excellent physical stability under different pH values, temperatures, and ionic concentrations, especially MBP-CA and MBP-ICA. Moreover, four complex nanoparticles could protect caffeoylquinic acid from being released in gastric fluid. All six samples exhibited high antioxidant activity in H2O2-induced HepaRG cells, especially BP and MBP-CA. These findings indicated that caffeoylquinic acid-polysaccharide complexes were successfully prepared and highlighted the potential of polysaccharides as natural carriers for hydrophobic bioactive molecules.

2.
J Cell Mol Med ; 28(7): e18237, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38509727

RESUMEN

To explore the underlying molecular mechanisms of supraventricular tachycardia (SVT), this study aimed to analyse the complex relationship between FLRT3 and TGF-ß/SMAD4 signalling pathway, which affects Na+ and K+ channels in cardiomyocytes. Bioinformatics analysis was performed on 85 SVT samples and 15 healthy controls to screen overlapping genes from the key module and differentially expressed genes (DEGs). Expression profiling of overlapping genes, coupled with Receiver Operating Characteristic (ROC) curve analyses, identified FLRT3 as a hub gene. In vitro studies utilizing Ang II-stimulated H9C2 cardiomyocytes were undertaken to elucidate the consequences of FLRT3 silencing on cardiomyocyte apoptosis and autophagic processes. Utilizing a combination of techniques such as quantitative reverse-transcription polymerase chain reaction (qRT-PCR), western blotting (WB), flow cytometry, dual-luciferase reporter assays and chromatin immunoprecipitation polymerase chain reaction (ChIP-PCR) assays were conducted to decipher the intricate interactions between FLRT3, the TGF-ß/SMAD4 signalling cascade and ion channel gene expression. Six genes (AADAC, DSC3, FLRT3, SYT4, PRR9 and SERTM1) demonstrated reduced expression in SVT samples, each possessing significant clinical diagnostic potential. In H9C2 cardiomyocytes, FLRT3 silencing mitigated Ang II-induced apoptosis and modulated autophagy. With increasing TGF-ß concentration, there was a dose-responsive decline in FLRT3 and SCN5A expression, while both KCNIP2 and KCND2 expressions were augmented. Moreover, a direct interaction between FLRT3 and SMAD4 was observed, and inhibition of SMAD4 expression resulted in increased FLRT3 expression. Our results demonstrated that the TGF-ß/SMAD4 signalling pathway plays a critical role by regulating FLRT3 expression, with potential implications for ion channel function in SVT.


Asunto(s)
Apoptosis , Glicoproteínas de Membrana , Proteína Smad4 , Taquicardia Supraventricular , Factor de Crecimiento Transformador beta , Humanos , Apoptosis/genética , Autofagia/genética , Western Blotting , Glicoproteínas de Membrana/metabolismo , Proteína Smad4/metabolismo , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo
3.
Chem Sci ; 15(11): 4135-4139, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38487247

RESUMEN

Na2Fe2(SO4)3 (NFS), as a promising cathode for sodium-ion batteries, is still plagued by its poor intrinsic conductivity. In general, hybridization with carbon materials is an effective strategy to improve the sodium storage performance of NFS. However, the role of carbon materials in the electrochemical performance of NFS cathode materials has not been thoroughly investigated. Herein, the effect of carbon materials was revealed by employing various conductive carbon materials as carbon sources. Among these, the NFS coated with Ketjen Black (NFS@KB) shows the largest specific surface area, which is beneficial for electrolyte penetration and rapid ionic/electronic migration, leading to improved electrochemical performance. Therefore, NFS@KB shows a long cycle life (74.6 mA h g-1 after 1000 cycles), superior rate performance (61.5 mA h g-1 at a 5.0 A g-1), and good temperature tolerance (-10 °C to 60 °C). Besides, the practicality of the NFS@KB cathode was further demonstrated by assembling a NFS@KB//hard carbon full cell. Therefore, this research indicates that a suitable carbon material for the NFS cathode can greatly activate the sodium storage performance.

4.
ACS Nano ; 18(13): 9354-9364, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38517038

RESUMEN

Na3V2(PO4)3 (NVP) based on the multielectron reactions between V2+ and V5+ has been considered a promising cathode for sodium-ion batteries (SIBs). However, it still suffers from unsatisfactory stability, caused by the poor reversibility of the V5+/V4+ redox couple and structure evolution. Herein, we propos a strategy that combines high-entropy substitution and electrolyte optimization to boost the reversible multielectron reactions of NVP. The high reversibility of the V5+/V4+ redox couple and crystalline structure evolution are disclosed by in situ X-ray absorption near-edge structure spectra and in situ X-ray diffraction. Meanwhile, the electrochemical reaction kinetics of high-entropy substitution NVP (HE-NVP) can be further improved in the diglyme-based electrolyte. These enable HE-NVP to deliver a superior electrochemical performance (capacity retention of 93.1% after 2000 cycles; a large reversible capacity of 120 mAh g-1 even at 5.0 A g-1). Besides, the long cycle life and high power density of the HE-NVP∥natural graphite full-cell configuration demonstrated the superiority of HE-NVP cathode in SIBs. This work highlights that the synergism of high-entropy substitution and electrolyte optimization is a powerful strategy to enhance the sodium-storage performance of polyanionic cathodes for SIBs.

5.
Chemistry ; 30(24): e202304056, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38379208

RESUMEN

3-Indole-3-one is a key intermediate in the synthesis of many drugs and plays an important role in synthetic chemistry and biochemistry. A new method for synthesizing trifluoromethylated 3-indoleketones by Pd(0)-catalyzed carbonylation was introduced. In the absence of additives, 1-chloro-3,3,3-trifluoropropyl (an inexpensive and environmentally friendly synthetic block of trifluoromethyl) reacts with indole and carbon monoxide to generate trifluoromethylindole ketones with good yields, regioselectivity, and chemical selectivity; furthermore, the products exhibit strong resistance to basic functional groups, such as alkynes, aldehydes, and esters. In addition to the conversion of indole compounds into corresponding products, pyrrole and heteroindole may be suitable for corresponding chemical transformations. This study provides a synthetic method for the further construction of trifluoromethylated 3-indole ketones.

6.
Nat Commun ; 15(1): 1717, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38403631

RESUMEN

Theoretical predictions of the ideal strength of materials range from E/30 to E/10 (E is Young's modulus). However, despite intense interest over the last decade, the value of the ideal strength achievable through experiments for metals remains a mystery. This study showcases the remarkable spall strength of Cu50Zr50 amorphous alloy that exceeds the E/10 limit at strain rates greater than 107 s-1 through laser-induced shock experiments. The material exhibits a spall strength of 11.5 GPa, approximately E/6 or 1/13 of its P-wave modulus, which sets a record for the elastic limit of metals. Electron microscopy and large-scale molecular dynamics simulations reveal that the primary failure mechanism at extreme strain rates is void nucleation and growth, rather than shear-banding. The rate dependence of material strength is explained by a void kinetic model controlled by surface energy. These findings help advance our understanding on the mechanical behavior of amorphous alloys under extreme strain rates.

7.
Sci Total Environ ; 918: 170672, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38316306

RESUMEN

Aminium ions, as crucial alkaline components within fine atmospheric particles, have a notable influence on new particle formation and haze occurrence. Their concentrations within coastal atmosphere depict considerable variation due to the interplay of distinctive marine and terrestrial sources, further complicated by dynamic meteorological conditions. This study conducted a comprehensive examination of aminiums ions concentrations, with a particular focus on methylaminium (MMAH+), dimethylaminium (DMAH+), trimethylaminium (TMAH+), and triethylaminium (TEAH+) within PM2.5, over varying seasons (summer, autumn, and winter of 2019 and summer of 2021), at an urban site in the coastal megacity of Qingdao, Northern China. The investigations revealed that the total concentration of particulate aminium ions (∑Aminium) was 21.6 ± 23.6 ng/m3, exhibiting higher values in the autumn and winter compared to the two summer periods. Considering diurnal variations during autumn and winter, concentrations of particulate aminium ions (excluding TEAH+) exhibited a slight increase during the day compared to night, with a notable peak during the morning hours. However, it was not the case for TEAH+, which was argued to be readily oxidized by ambient oxidants in the afternoon. Additionally, the ∑Aminium within the summer demonstrated markedly elevated levels during the day compared to night, potentially attributed to daytime sea fog associated with sea-land breeze interactions. Positive matrix factorization results indicate terrestrial anthropogenic emissions, including vehicle emission mixed with road dust and primary pollution, as the primary sources of MMAH+ and DMAH+. Conversely, TMAH+ was predominantly emitted from agricultural and marine sources. With the dominance of sea breeze in summer, TMAH+ was identified as a primary marine emission correlated with sea salt, while MMAH+, DMAH+, and TEAH+ were postulated to undergo secondary formation. Furthermore, a notable inverse correlation was observed between TMAH+ and methanesulfonate in PM2.5, consistent with dynamic emissions of sulfur-content and nitrogen-content gases reported in the literature.

8.
Nat Mater ; 23(1): 52-57, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38052935

RESUMEN

Although metallic nanostructures have been attracting tremendous research interest in nanoscience and nanotechnologies, it is known that environmental attacks, such as surface oxidation, can easily initiate cracking on the surface of metals, thus deteriorating their overall functional/structural properties1-3. In sharp contrast, here we report that severely oxidized metallic glass nanotubes can attain an ultrahigh recoverable elastic strain of up to ~14% at room temperature, which outperform bulk metallic glasses, metallic glass nanowires and many other superelastic metals hitherto reported. Through in situ experiments and atomistic simulations, we reveal that the physical mechanisms underpinning the observed superelasticity can be attributed to the formation of a percolating oxide network in metallic glass nanotubes, which not only restricts atomic-scale plastic events during loading but also leads to the recovery of elastic rigidity on unloading. Our discovery implies that oxidation in low-dimensional metallic glasses can result in unique properties for applications in nanodevices.

9.
Am J Ophthalmol ; 258: 145-157, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37543298

RESUMEN

PURPOSE: To compare the effect of filtering surgery versus clear lens extraction in young patients with medically uncontrolled angle-closure glaucoma (ACG). DESIGN: Retrospective, nonrandomized, comparative, interventional study. METHODS: We reviewed the medical charts of patients with the following scenarios: (1) age ≤40 years; (2) diagnosis of ACG without cataract, including primary angle-closure glaucoma (PACG), nanophthalmic ACG, and ACG combined with retinal dystrophies; and (3) ACG undergoing filtering surgery or clear lens extraction. The main outcomes including intraocular pressure (IOP), number of medications, best-corrected visual acuity, and severe complications were extracted at the postoperative early (within 1 week) and late stage (>3 months) follow-up. RESULTS: Data from 160 eyes of 130 young patients with ACG were available. Eyes with 76 PACG, 12 nanophthalmic ACG, and 26 ACG with retinal diseases underwent filtering surgery, whereas eyes with 22 PACG, 12 nanophthalmic ACG, and 12 ACG with retinal diseases received clear lens extraction. Overall, filtering surgery and clear lens extraction resulted in significant but comparable IOP and drug reductions at the postoperative late stage in each ACG subgroup, with similar complete success rates between 2 treatments (all P > .05). Regarding the safety, filtering surgery and patients with retinal diseases were independent factors associated with postoperative malignant glaucoma (P < .05 in both multivariable logistic regression models). CONCLUSIONS: This study highlights that the efficacy of clear lens extraction is comparable to that of filtering surgery in medically uncontrolled ACG in young patients, but clear lens extraction is safer, especially for young patients with ACG comorbid with retinal diseases.


Asunto(s)
Cirugía Filtrante , Glaucoma de Ángulo Cerrado , Enfermedades de la Retina , Adulto , Humanos , Glaucoma de Ángulo Cerrado/cirugía , Glaucoma de Ángulo Cerrado/complicaciones , Presión Intraocular , Enfermedades de la Retina/complicaciones , Estudios Retrospectivos
10.
ChemSusChem ; 17(5): e202301421, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38102854

RESUMEN

An efficiently catalyzed synthesis of pharmaceutically relevant 1,2,3-trazoles from renewable resources is highly desirable. However, due to incompatible catalysis conditions, this endeavor remained challenging so far. Herein, a practical access protocol to 1,2,3-triazoles, starting from lignin phenolic ß-O-4 with γ-OH group utilizing a vanadium-based catalyst is presented. A broad substrate scope reaching up to 97 % yield of 1,2,3-triazoles are obtained. The reaction pathway includes selective cleavage of double C-O bonds, cycloaddition, and dehydrogenation. Mechanistic studies and density-functional theory (DFT) calculations suggest that the V-based complex acts as a bifunctional catalyst for both selective C-O bonds cleavage and dehydrogenation. This synthetic pathway has been applied for the synthesis of pharmacological and biological active carbohydrate derivatives starting from biomass components as feedstock, enabling a potential sustainable route to triazolyl carbohydrate derivatives, which paves the way for lignin-based heterocyclic aromatics in the pharmaceutical applications.

11.
Front Cell Infect Microbiol ; 13: 1236414, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38053531

RESUMEN

Background: Most of malignant external otitis (MEO) cases reported in the literature are attributed to Pseudomonas aeruginosa. Fungal infections in MEO are also likely but extremely rare. And conventional microbiology tests is difficult to diagnose. Case description: Two patients were diagnosed with Fungal malignant external otitis (FMEO) due to Aspergillus by metagenomic Next-Generation Sequencing (mNGS) and recovered after comprehensive treatment including operation and voriconazole. The antifungal treatment was delayed due to repeated cultures of secretions being negative and pathological examination showed granulation tissue proliferation with extensive neutrophil infiltration. Conclusion: mNGS might be helpful for patients suspected with FMEO, especially when conventional microbiology tests were negative.


Asunto(s)
Otitis Externa , Humanos , Otitis Externa/diagnóstico , Secuenciación de Nucleótidos de Alto Rendimiento , Antifúngicos/uso terapéutico , Metagenoma , Metagenómica
12.
Eur J Pharmacol ; 961: 176167, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37939994

RESUMEN

BACKGROUND: Recent evidence revealed that glucose fluctuation might be more likely to cause arrhythmia than persistent hyperglycemia, whereas its mechanisms were elusive. We aimed to investigate the effect of glucose fluctuation on the occurrence of ventricular arrhythmia and its mechanism. METHODS: Streptozotocin (STZ) induced diabetic rats were randomized to five groups: the controlled blood glucose (C-STZ) group, uncontrolled blood glucose (U-STZ) group, fluctuated blood glucose (GF-STZ) group, and GF-STZ rats with 100 mg/kg Tempol (GF-STZ + Tempol) group or with 5 mg/kg KN93 (GF-STZ + KN93) group. Six weeks later, the susceptibility of ventricular arrhythmias and the electrophysiological dysfunctions of ventricular myocytes were evaluated using electrocardiogram and patch-clamp technique, respectively. The levels of reactive oxygen species (ROS) and oxidized CaMKII (ox-CaMKII) were determined by fluorescence assay and Western blot, respectively. Neonatal rat cardiomyocytes and H9C2 cells in vitro were used to explore the underlying mechanisms. RESULTS: The induction rate of ventricular arrhythmias was 10%, 55%, and 90% in C-STZ group, U-STZ group, and GF-STZ group, respectively (P < 0.05). The electrophysiological dysfunctions of ventricular myocytes, including action potential duration at repolarization of 90% (APD90), APD90 short-term variability (APD90-STV), late sodium current (INa-L), early after depolarization (EAD) and delayed after depolarizations (DAD), as well as the levels of ROS and ox-CaMKII, were significantly increased in GF-STZ group. In vivo and ex vivo, inhibition of ROS or ox-CaMKII reversed these effects. Inhibition of INa-L also significantly alleviated the electrophysiological dysfunctions. In vitro, inhibition of ROS increase could significantly decrease the ox-CaMKII activation induced by glucose fluctuations. CONCLUSIONS: Glucose fluctuations aggravated the INa-L induced ventricular arrhythmias though the activation of ROS/CaMKII pathway.


Asunto(s)
Diabetes Mellitus Experimental , Glucosa , Animales , Ratas , Potenciales de Acción , Arritmias Cardíacas/inducido químicamente , Arritmias Cardíacas/metabolismo , Glucemia/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Diabetes Mellitus Experimental/metabolismo , Glucosa/metabolismo , Miocitos Cardíacos , Especies Reactivas de Oxígeno/metabolismo , Sodio/metabolismo
13.
Am J Cardiol ; 209: 12-19, 2023 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-37856915

RESUMEN

A total of 172 consecutive patients with sympathetic paroxysmal atrial fibrillation who received cryoballoon (CB) ablation from 2020 to 2021 were retrospectively analyzed in this study. Catheter coaxiality and anatomic features of pulmonary veins (PVs) on computed tomography images were explored by several parameters and their influence on the cryoablation results was then analyzed. The rate of incomplete CB occlusion was significantly higher for inferior than superior PVs. A multivariate analysis revealed that a short distance (<6.3 mm) from PV ostium to first branch (D-PVB) and a small angle (<32.5°) of first branch were independent predict factors for an incomplete CB occlusion in right inferior PVs (RIPVs). A combination of D-PVB and angle of first branch could elevate the predictor value for an incomplete balloon occlusion with a sensitivity of 0.85 and specificity of 1.0 for RIPVs. For PVs with a perfect balloon occlusion, the best catheter coaxiality was observed in right superior PV while the worst catheter coaxiality was observed in RIPV. A more aggressive catheter manipulation with a "7" or "reverse-U" shape of long sheath could obtain a better catheter coaxiality compared with conventional manipulation strategy for RIPVs. In Conclusion, a short D-PVB and a small angle of first branch were independent predict factors for an incomplete CB occlusion in RIPVs. A more aggressive catheter manipulation strategy was recommended to achieve a complete balloon occlusion and a better catheter coaxiality for RIPVs.


Asunto(s)
Fibrilación Atrial , Ablación por Catéter , Criocirugía , Venas Pulmonares , Humanos , Fibrilación Atrial/cirugía , Venas Pulmonares/diagnóstico por imagen , Venas Pulmonares/cirugía , Estudios Retrospectivos , Criocirugía/métodos , Catéteres , Resultado del Tratamiento
14.
Heliyon ; 9(8): e19201, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37664749

RESUMEN

Water production from gas wells is a key factor affecting the effectiveness of gas-reservoir development, and it poses serious challenges in terms of increasing the degree of recovery during the waterless production stage and reducing the impact of water production on gas-reservoir development in the middle and later periods. Thus, gas reservoirs must be efficiently exploited on the basis of identifying gas-water layers accurately, defining gas-water relationships, and understanding gas-water production performance. Accordingly, this study analyzes the production characteristics in gas reservoirs with different gas-water relationships, and it summarizes the rules that determine water-gas ratios. The results reveal that the water-gas ratio increases rapidly in the early stage of water production, but after a period of time, it enters a relatively stable state in which it is almost a fixed value. According to the material balance equation, the theoretically calculated water-gas ratio is fully consistent with the production rules for an entire confined gas reservoir. This shows that the reality of gas-well-water production must be faced, and that the development of water-bearing gas reservoirs must accommodate gas and water co-production. The gas-water relationship, water body scale, and reservoir heterogeneity determine the time of water breakthrough and the water-gas ratio. Therefore, we should change the traditional "water fear" concept in gas-field development, aim for an overall improvement in recovery, face up to the fact that gas wells produce water, and coordinate the development of multi-wells for entire gas reservoirs, all of which will achieve the ultimate goal of improved gas recovery.

15.
Appl Opt ; 62(16): 4236-4244, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37706911

RESUMEN

Optical simulations allow the evaluation of the absorption, reflection, and transmission of each functional layer of solar cells and, therefore, are of great importance for the design of high-efficiency crystalline silicon (c-Si) solar cells. Here, a multi-scale simulation method (MSM) based on ray and wave optics is proposed to investigate the optical characteristics of c-Si solar cells. The ray and wave optical methods are first independently employed on inverted pyramid glass sheets, where the latter one can describe the size-dependent interfacial scattering characteristics more accurately. Then the optical properties of a c-Si solar cell with a tunnel oxide passivated carrier-selective contact configuration are studied by employing the MSM, where scattering at the interfaces is acquired by a finite-difference time-domain method (wave optics). Since the MSM can accurately simulate optical modes such as the Rayleigh anomaly, Bloch mode, and Mie resonances, the reflection and transmission spectra of the whole device are in good agreement with the measured data. The proposed MSM has proven to be accurate for structures with functional thin films, which can be extended to hybrid tandem devices with top-level cells consisting of stacks of layers with similar dimensions.

16.
Nat Commun ; 14(1): 6076, 2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37770462

RESUMEN

One-pot synthesis of heterocyclic aromatics with good optical properties from phenolic ß-O-4 lignin segments is of high importance to meet high value added biorefinery demands. However, executing this process remains a huge challenge due to the incompatible reaction conditions of the depolymerization of lignin ß-O-4 segments containing γ-OH functionalities and bioresource-based aggregation-induced emission luminogens (BioAIEgens) formation with the desired properties. In this work, benzannulation reactions starting from lignin ß-O-4 moieties with 3-alkenylated indoles catalyzed by vanadium-based complexes have been successfully developed, affording a wide range of functionalized carbazoles with up to 92% yield. Experiments and density functional theory calculations suggest that the reaction pathway involves the selective cleavage of double C-O bonds/Diels-Alder cycloaddition/dehydrogenative aromatization. Photophysical investigations show that these carbazole products represent a class of BioAIEgens with twisted intramolecular charge transfer. Distinctions of emission behavior were revealed based on unique acceptor-donor-acceptor-type molecular conformations as well as molecular packings. This work features lignin ß-O-4 motifs with γ-OH functionalities as renewable substrates, without the need to apply external oxidant/reductant systems. Here, we show a concise and sustainable route to functional carbazoles with AIE properties, building a bridge between lignin and BioAIE materials.

17.
Front Immunol ; 14: 1169471, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37575264

RESUMEN

Introduction: Intercellular communication is essential for almost all physiological and pathological processes. Endothelial cell (EC)-derived exosomes, working as mediators for intercellular information exchange, are involved in the pathophysiological mechanisms of atherosclerosis. However, the effect of inflamed endothelial exosomes on the function of macrophages (Mϕ) is poorly defined. This study aims to unravel how exosomes derived from tumor necrosis factor-α (TNF-α)-stimulated ECs (exo-T) affect Mϕ in vitro. Methods and results: Exosomes derived from untreated ECs (exo) and exo-T were identified by using TEM, NTA, and western blot, and we observed that PKH67-labeled exo/exo-T were taken up by Mϕ. Exposure to exo-T for 24 h not only skewed Mϕ to the M1 subtype and exacerbated lipid deposition, but also promoted Mϕ apoptosis, while it did not significantly affect Mϕ migration, as detected by RT-qPCR, Dil-ox-LDL uptake assay, flow cytometry, wound healing assay, and transwell assay, respectively. In addition, exo/exo-T-related microRNA-Seq revealed 104 significantly differentially expressed microRNAs (DE-miRNAs). The target genes of DE-miRNAs were mainly enriched functionally in metabolic pathways, MAPK signaling pathway, etc., as determined using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. We further demonstrated by immunoblotting that exo-T intervention improves the phosphorylation of MAPK/NF-κB-related proteins. Discussion and conclusion: Collectively, this study reveals that inflamed endothelial exosomes (TNF-α-stimulated EC-derived exosomes) work as a functional mediator to affect Mϕ function and may activate Mϕ through MAPK/NF-κB signaling pathways.


Asunto(s)
Exosomas , MicroARNs , FN-kappa B/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Exosomas/metabolismo , MicroARNs/metabolismo , Macrófagos/metabolismo
18.
Pacing Clin Electrophysiol ; 46(9): 1035-1048, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37573146

RESUMEN

Transcatheter radiofrequency ablation has been widely introduced for the treatment of tachyarrhythmias. The demand for catheter ablation continues to grow rapidly as the level of recommendation for catheter ablation. Traditional catheter ablation is performed under the guidance of X-rays. X-rays can help display the heart contour and catheter position, but the radiobiological effects caused by ionizing radiation and the occupational injuries worn caused by medical staff wearing heavy protective equipment cannot be ignored. Three-dimensional mapping system and intracardiac echocardiography can provide detailed anatomical and electrical information during cardiac electrophysiological study and ablation procedure, and can also greatly reduce or avoid the use of X-rays. In recent years, fluoroless catheter ablation technique has been well demonstrated for most arrhythmic diseases. Several centers have reported performing procedures in a purposefully designed fluoroless electrophysiology catheterization laboratory (EP Lab) without fixed digital subtraction angiography equipment. In view of the lack of relevant standardized configurations and operating procedures, this expert task force has written this consensus statement in combination with relevant research and experience from China and abroad, with the aim of providing guidance for hospitals (institutions) and physicians intending to build a fluoroless cardiac EP Lab, implement relevant technologies, promote the standardized construction of the fluoroless cardiac EP Lab.


Asunto(s)
Ablación por Catéter , Técnicas Electrofisiológicas Cardíacas , Cirugía Asistida por Computador , Humanos , Electrofisiología Cardíaca , Ablación por Catéter/métodos , Técnicas Electrofisiológicas Cardíacas/métodos , Cirugía Asistida por Computador/métodos , Resultado del Tratamiento
19.
Adv Mater ; : e2305453, 2023 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-37561587

RESUMEN

Since 2004, the design of high entropy alloys (HEAs) has generated significant interest within the materials science community due to their exceptional structural and functional properties. By incorporating multiple principal elements into a common lattice, it is possible to create a single-phase crystal with a highly distorted lattice. This unique feature enables HEAs to offer a promising combination of mechanical and physical properties that are not typically observed in conventional alloys. In this article, an extensive overview of multifunctional HEAs that exhibit severe lattice distortion is provided, covering the theoretical models that are developed to understand lattice distortion, the experimental and computational methods employ to characterize lattice distortion, and most importantly, the impact of severe lattice distortion on the mechanical, physical and electrochemical properties of HEAs. Through this review, it is hoped to stimulate further research into the study of distorted lattices in crystalline solids.

20.
Nat Commun ; 14(1): 3199, 2023 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-37268632

RESUMEN

Bilayer graphene (BLG) is intriguing for its unique properties and potential applications in electronics, photonics, and mechanics. However, the chemical vapor deposition synthesis of large-area high-quality bilayer graphene on Cu is suffering from a low growth rate and limited bilayer coverage. Herein, we demonstrate the fast synthesis of meter-sized bilayer graphene film on commercial polycrystalline Cu foils by introducing trace CO2 during high-temperature growth. Continuous bilayer graphene with a high ratio of AB-stacking structure can be obtained within 20 min, which exhibits enhanced mechanical strength, uniform transmittance, and low sheet resistance in large area. Moreover, 96 and 100% AB-stacking structures were achieved in bilayer graphene grown on single-crystal Cu(111) foil and ultraflat single-crystal Cu(111)/sapphire substrates, respectively. The AB-stacking bilayer graphene exhibits tunable bandgap and performs well in photodetection. This work provides important insights into the growth mechanism and the mass production of large-area high-quality BLG on Cu.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...